Math 2550 - Homework # 6 Coordinate systems in \mathbb{R}^n

- 1. Show that the following vectors are linearly dependent. In addition, write one of the vectors as a linear combination of the other vectors.
 - (a) In \mathbb{R}^2 : $\vec{v} = \langle 2, 3 \rangle, \ \vec{u} = \langle 1, \frac{3}{2} \rangle$
 - (b) In \mathbb{R}^2 : $\vec{v} = \langle 1, -1 \rangle$, $\vec{u} = \langle 0, -3 \rangle$, $\vec{w} = \langle 2, 1 \rangle$
 - (c) In \mathbb{R}^3 : $\vec{v} = \langle 2, -1, 3 \rangle$, $\vec{u} = \langle 4, 1, 2 \rangle$, $\vec{w} = \langle 8, -1, 8 \rangle$
- 2. In \mathbb{R}^2 consider the vectors $\vec{a} = \langle 1, 1 \rangle, \ \vec{b} = \langle -1, 1 \rangle$
 - (a) Show that \vec{a}, \vec{b} are linearly independent. Conclude that they form a basis $\beta = [\vec{a}, \vec{b}]$ for \mathbb{R}^2 .
 - (b) Draw a picture of the two axes that \vec{a} and \vec{b} create. Label the \vec{a} -axis with $-3\vec{a}, -2\vec{a}, -\vec{a}, \vec{0}, \vec{a}, 2\vec{a}, 3\vec{a}$. Then do the same kind of labeling for the \vec{b} -axis. Then draw the grid that the axes create.
 - (c) Draw a picture with $2\vec{a}$ and \vec{b} and $2\vec{a} + \vec{b}$. Draw the parallelogram that is created.
 - (d) Draw a picture with $-2\vec{a}$ and $-2\vec{b}$ and $-2\vec{a} 2\vec{b}$. Draw the parallelogram that is created.
 - (e) Find the coordinates $[\vec{v}]_{\beta}$ of $\vec{v} = \langle -1, 5 \rangle$.
 - (f) Find the coordinates $[\vec{w}]_{\beta}$ of $\vec{w} = \langle -3, -1 \rangle$.
 - (g) Show that β is an orthogonal basis, but not an orthonormal basis.
 - (h) Use the Coordinate Dot Product Theorem to find the coordinates $[\vec{v}]_{\beta}$ of $\vec{v} = \langle 10, \frac{1}{2} \rangle$.
 - (i) Use the Coordinate Dot Product Theorem to find the coordinates $[\vec{v}]_{\beta}$ of $\vec{v} = \langle 1, 2 \rangle$.
 - (j) Suppose you know that $[\vec{v}]_{\beta} = \langle 5, -4 \rangle$. What is \vec{v} ?

- 3. In \mathbb{R}^2 consider the vectors $\vec{a} = \langle 1, 1 \rangle, \ \vec{b} = \langle 1, 0 \rangle$
 - (a) Show that \vec{a}, \vec{b} are linearly independent. Conclude that they form a basis $\beta = [\vec{a}, \vec{b}]$ for \mathbb{R}^2 .
 - (b) Draw a picture of the two axes that \vec{a} and \vec{b} create. Label the \vec{a} -axis with $-3\vec{a}, -2\vec{a}, -\vec{a}, \vec{0}, \vec{a}, 2\vec{a}, 3\vec{a}$. Then do the same kind of labeling for the \vec{b} -axis. Then draw the grid that the axes create.
 - (c) Draw a picture with $3\vec{a}$ and \vec{b} and $3\vec{a} + \vec{b}$. Draw the parallelogram that is created.
 - (d) Draw a picture with $-\vec{a}$ and $2\vec{b}$ and $-\vec{a} + 2\vec{b}$. Draw the parallelogram that is created.
 - (e) Find the coordinates $[\vec{v}]_{\beta}$ of $\vec{v} = \langle 1, 2 \rangle$.
 - (f) Find the coordinates $[\vec{w}]_{\beta}$ of $\vec{w} = \langle -1, 3 \rangle$.
 - (g) Show that β is not an orthogonal basis, and thus is also not an orthonormal basis.
 - (h) Suppose you know that $[\vec{v}]_{\beta} = \langle -3, 20 \rangle$. What is \vec{v} ?
- 4. In \mathbb{R}^3 consider the vectors $\vec{i} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, $\vec{k} = \langle 0, 0, 1 \rangle$
 - (a) Show that \vec{i} , \vec{j} , \vec{k} are linearly independent. Conclude that they form a basis $\beta = [\vec{i}, \vec{j}, \vec{k}]$ for \mathbb{R}^3 .
 - (b) Draw a picture of $3\vec{i} + \vec{j}$. Show how it is created from the β vectors.
 - (c) Draw a picture of $-2\vec{i} + 2\vec{j} + \vec{k}$. Show how it is created from the β vectors.
 - (d) Find the coordinates $[\vec{v}]_{\beta}$ of $\vec{v} = \langle -1, 2, 1 \rangle$.
 - (e) Show that β is an orthonormal basis and an orthonormal basis.
 - (f) Use the Coordinate Dot Product Theorem to find the coordinates $[\vec{v}]_{\beta}$ of $\vec{v} = \langle 6, 1, -5 \rangle$.

- 5. In \mathbb{R}^3 consider the vectors $\vec{a} = \langle 1, 1, 0 \rangle$, $\vec{b} = \langle -1, 1, 0 \rangle$, $\vec{c} = \langle 0, 0, 1 \rangle$
 - (a) Show that \vec{a} , \vec{b} , \vec{c} are linearly independent. Conclude that they form a basis $\beta = [\vec{a}, \vec{b}, \vec{c}]$ for \mathbb{R}^3
 - (b) Suppose you know that $[\vec{v}]_{\beta} = \langle 3, 1, -4 \rangle$. What is \vec{v} ?
 - (c) Find the coordinates $[\vec{v}]_{\beta}$ of $\vec{v} = \langle 3, 3, 2 \rangle$.
 - (d) Show that β is an orthogonal basis, but not an orthonormal basis.
 - (e) Use the Coordinate Dot Product Theorem to find the coordinates $[\vec{v}]_{\beta}$ of $\vec{v} = \langle 1, 2, 3 \rangle$.
- 6. In \mathbb{R}^4 consider the vectors $\vec{e_1} = \langle 1, 0, 0, 0 \rangle$, $\vec{e_2} = \langle 0, 1, 0, 0 \rangle$, $\vec{e_3} = \langle 0, 0, 1, 0 \rangle$, $\vec{e_4} = \langle 0, 0, 0, 1 \rangle$.
 - (a) Show that $\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4$ are linearly independent. Conclude that they form a basis $\beta = [\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4]$ for \mathbb{R}^4 . This basis is called the **standard basis** for \mathbb{R}^4 .
 - (b) Suppose you know that $[\vec{v}]_{\beta} = \langle -3, 1, -4, \pi \rangle$. What is \vec{v} ?
 - (c) Find the coordinates $[\vec{v}]_{\beta}$ of $\vec{v} = \langle \frac{2}{3}, 7, 5, -10 \rangle$.
 - (d) Show that β is an orthonormal basis.
- (a) Find an orthonormal basis for ℝ⁵.
 [Hint: Look at problems 4 and 6. Do you see a pattern?]
 - (b) Can you describe an orthonormal basis for \mathbb{R}^n ?